

Geometry Unit 4 Vocabulary

Triangle Congruence

<u>Biconditional statement</u> – A is a statement that contains the phrase "if and only if." Writing a biconditional statement is equivalent to writing a conditional statement and its converse.

The biconditional statement below can be rewritten as a conditional statement and its converse.

Three lines are coplanar if and only if they lie in the same plane.

Conditional statement: If three lines are coplanar, then they lie in the same plane.

Converse: If three lines lie in the same plane, then they are coplanar.

.

A biconditional statement can be either true or false. To be true, *both* the conditional statement and its converse must be true. This means that a true biconditional statement is true both "forward" and "backward." All definitions can be written as true biconditional statements.

<u>Congruence Transformations</u>-transformations that preserve distance, therefore, creating congruent figures

Translation	Reflection	Rotation
 length is the same orientation is the same 	 length is the same orientation is reversed 	 length is the same orientation is changed
Notice the segments are facing the same way.	Notice the segments are facing the opposite way.	Notice the segments are facing a different way.
A A'	A B'	B B' A'

Overlapping triangles – triangles lying on top of one another sharing some but not all sides.

<u>Theorems</u>

<u>AAS Congruence Theorem</u> – Triangles are congruent if two pairs of corresponding angles and a pair of opposite sides are equal in both triangles.

ASA Congruence Theorem -Triangles are congruent if any two angles and their included side are equal in both triangles.

<u>SAS Congruence Theorem</u> -Triangles are congruent if any pair of corresponding sides and their <u>included</u> angles are equal in both triangles.

<u>SSS Congruence Theorem</u> -Triangles are congruent if all three sides in one triangle are congruent to the corresponding sides in the other.

Special congruence theorem for RIGHT TRIANGLES!

```
Hypotenuse-Leg Congruence Theorem: HL
Hypotenuse-Leg Congruence Theorem (HL)
```

 If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and the leg of a second right triangle, then the two triangles are congruent.

